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Abstract

We present a new algorithm to model the input uncertainty and its propagation in incompressible flow simulations.

The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme

as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to

obtain the equations in the weak form. The resulting system of deterministic equations is then solved with standard

methods to obtain the solution for each random mode. This approach can be considered as a generalization of the

original polynomial chaos expansion, first introduced by Wiener [Am. J. Math. 60 (1938) 897]. The original method

employs the Hermite polynomials (one of the 13 members of the Askey scheme) as the basis in random space. The

algorithm is applied to micro-channel flows with random wall boundary conditions, and to external flows with random

freestream. Efficiency and convergence are studied by comparing with exact solutions as well as numerical solutions

obtained by Monte Carlo simulations. It is shown that the generalized polynomial chaos method promises a substantial

speed-up compared with the Monte Carlo method. The utilization of different type orthogonal polynomials from the

Askey scheme also provides a more efficient way to represent general non-Gaussian processes compared with the

original Wiener–Hermite expansions.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently there has been an intense interest in verification and validation of large-scale simulations and in

modeling uncertainty [1–3]. In simulations, just like in the experiments, we often question the accuracy of

the results and we construct a posteriori error bounds, but the new objective is to model the uncertainty

from the beginning of the simulations and not simply as an afterthought. Numerical accuracy and error

control have been employed in simulations for some time now, at least for the modern discretizations, e.g.
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[4,5]. However, there are always some uncertain components associated with the physical problems, spe-

cifically with such diverse factors as constitutive laws, boundary and initial conditions, transport coeffi-

cients, source and interaction terms, geometric irregularities (e.g., roughness), etc.

Most of the research efforts in CFD research so far have been in developing efficient algorithms for

different applications, assuming ideal inputs with precisely defined computational domains. With the field

reaching some degree of maturity now, we naturally pose the more general question of how to model

uncertainty and stochastic inputs, and how to formulate algorithms to accurately reflect the propagation of

the uncertainty. To this end, the Monte Carlo approach can be employed but it is computationally ex-
pensive and is only used as the last resort. The sensitivity method is a more economical approach, based on

the moments of samples, but it is less robust and depends strongly on the modeling assumptions [6]. One

popular technique is the perturbation method where all the stochastic quantities are expanded around their

mean via Taylor series. This approach, however, is limited to small perturbations and does not readily

provide information on high-order statistics of the response. The resulting system of equations becomes

extremely complicated beyond second-order expansion. Another approach is based on expanding the in-

verse of the stochastic operator in a Neumann series, but this too is limited to small fluctuations, and even

combinations with the Monte Carlo method seem to result in computationally prohibitive algorithms for
complex systems [7].

A more effective approach pioneered by Ghanem and Spanos [8] in the context of finite elements for

solid mechanics is based on a spectral representation of the uncertainty. This allows high-order repre-

sentation, not just first-order as in most perturbation-based methods, at high computational efficiency. It is

based on the original theory of Wiener [9,10] on homogeneous chaos. This approach was employed in

turbulence in the 1960s [11–13]. However, it was realized that the chaos expansion converges slowly for

turbulent field [14–16], so polynomial chaos did not receive much attention for a long time.

The main purpose of this paper is to demonstrate that the polynomial chaos expansion can be effective in
modeling uncertainties associated with fluid flows. When the uncertainty has relatively strong correlation,

the chaos expansion converges fast; in the ideal case it converges exponentially fast due to the fact that it is

a spectral expansion in the random space. The spectral representation of the uncertainty is based on a trial

basis fWðnðhÞÞg where h denotes the random event. For example, the vorticity has the following finite-

dimensional representation:

xðx; t; hÞ ¼
XP

i¼0
xiðx; tÞWiðnðhÞÞ:

Here xiðx; tÞ represents the deterministic coefficients and will be denoted as the random mode ðiÞ of the
vorticity. The random trial basis is a set of complete orthogonal polynomials in terms of the multi-di-
mensional random variable nðhÞ with a specific probability distribution. WðnðhÞÞ is a functional, as it is a
function of random variables n which are functions of the random parameter h 2 ½0; 1�. For the original
polynomial chaos introduced by Wiener, the polynomial trial basis is the Hermite polynomials in terms of

multi-dimensional Gaussian random variables. In this paper, we will apply this expansion to fluid flows and

further generalize the trial basis to other orthogonal polynomials from the Askey scheme [17]. For different

types of basis polynomials, the random variables nðhÞ are not restricted to the Gaussian variables.
Therefore, we have additional flexibility to represent the non-Gaussian processes more efficiently. The

theory of orthogonal functionals plays a key role in the algorithms developed here. We note that the Monte
Carlo algorithm can be thought of as a subcase of the above representation corresponding to the collo-

cation procedure where the test basis is WiðhÞ ¼ dðh 	 hiÞ, where d is the Kronecker delta function and hi

refers to an isolated random event.

The algorithms we develop here are general but we present applications with uncertainty associated with

boundary conditions. This situation is encountered, for example, in micro-channel flows but also in clas-
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sical flows such as the freestream flow past bluff bodies. The generalized polynomial chaos expansion can

handle both Gaussian and non-Gaussian random processes. For certain distributions there exist a ‘‘best’’

representation which results in fast convergence rate. For example, for Poisson distributions is the Charlier

polynomials, for Gamma distributions the Laugerre polynomials, for binomial distributions the Krawtc-

houk polynomials, for the beta distributions the Jacobi polynomials, etc.

In the next section we review the theory of the Askey scheme of hypergeometric orthogonal polynomials,

and in Section 3 we present the framework of the generalized polynomial chaos. In Section 4 we address its

implementation details when applied to Navier–Stokes equations. In Section 5 we present the computa-
tional results of various applications and demonstrate the convergence property of the chaos expansion. We

conclude the paper with a discussion on open questions. In Appendix A we include a brief review of or-

thogonal polynomials.

2. The Askey scheme of hypergeometric orthogonal polynomials

The theory of orthogonal polynomials is relatively mature and several books have been devoted to their
study (e.g. [18–20]). More recent work has shown that an important class of orthogonal polynomials be-

longs to the Askey scheme of the hypergeometric polynomials [17]. In this section, we briefly review the

theory of hypergeometric orthogonal polynomials; we adopt the notation of Koekoek and Swarttouw [21]

and Schoutens [22].

2.1. The generalized hypergeometric series

We first introduce the Pochhammer symbol ðaÞn defined by

ðaÞn ¼
1 if n ¼ 0;
aðaþ 1Þ � � � ðaþ n	 1Þ if n ¼ 1; 2; 3; . . .

�
ð1Þ

In terms of Gamma function, we have

ðaÞn ¼
Cðaþ nÞ

CðaÞ ; n > 0: ð2Þ

The generalized hypergeometric series rFs is defined by

rFsða1; . . . ; ar; b1; . . . ; bs; zÞ ¼
X1
k¼0

ða1Þk � � � ðarÞk
ðb1Þk � � � ðbsÞk

zk

k!
; ð3Þ

where bi 6¼ 0;	1;	2; . . . for i ¼ f1; . . . ; sg to ensure the denominator factors in the terms of the series are
never zero. The radius of convergence q of the hypergeometric series is

q ¼
1 if r < sþ 1;
1 if r ¼ sþ 1;
0 if r > sþ 1:

8<
: ð4Þ

Some elementary cases of the hypergeometric series are: the exponential series 0F0 and the binomial series
1F0.
If one of the numerator parameters ai; i ¼ 1; . . . ; r; is a negative integer, say a1 ¼ 	n, the hypergeo-

metric series (3) terminates at the nth-term and becomes a polynomial in z,
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rFsð	n; . . . ; ar; b1; . . . ; bs; zÞ ¼
Xn

k¼0

ð	nÞk � � � ðarÞk
ðb1Þk � � � ðbsÞk

zk

k!
: ð5Þ

2.2. Some properties of the orthogonal polynomials

A system of polynomials fQnðxÞ; n 2 Ng where QnðxÞ is a polynomial of exact degree n and

N ¼ f0; 1; 2; . . .g or N ¼ f0; 1; . . . ;Ng for a finite nonnegative integer N , is an orthogonal system of
polynomials with respect to some real positive measure / if the following orthogonality relations are

satisfied:Z
S
QnðxÞQmðxÞd/ðxÞ ¼ h2ndnm; n;m 2 N; ð6Þ

where S is the support of the measure / and the hn are non-zero constants. The system is called ortho-

normal if hn ¼ 1.
The measure / often has a density wðxÞ or weights wðiÞ at points xi in the discrete case. The relations (6)

then becomeZ
S
QnðxÞQmðxÞwðxÞdx ¼ h2ndnm; n;m 2 N; ð7Þ

in the continuous case, or

XM
i¼0

QnðxiÞQmðxiÞwðxiÞ ¼ h2ndnm; n;m 2 N; ð8Þ

in the discrete case where it is possible that M ¼ 1.
The density wðxÞ, or weights wðiÞ in the discrete case, is also commonly referred as the weighting

function in the theory of orthogonal polynomials. It will be shown later that the weighting functions for

some orthogonal polynomials are identical to certain probability functions. For example, the weighting

function for the Hermite polynomials is the same as probability density function of the Gaussian random

variables. This fact plays an important role in representing stochastic processes with orthogonal

polynomials.

2.3. The Askey scheme

The Askey scheme, which is represented as a tree structure in Fig. 1 (following [22]), classifies the

hypergeometric orthogonal polynomials and indicates the limit relations between them. The �tree� starts
with the Wilson polynomials and the Racah polynomials on the top. They both belong to the class 4F3
of the hypergeometric orthogonal polynomials given by Eq. (5). The Wilson polynomials are contin-
uous while the Racah polynomials are discrete. The lines connecting different polynomials denote the

limit transition relationships between them; this implies that the polynomials at the lower end of the

lines can be obtained by taking the limit of one of the parameters from their counterparts on the upper

end. For example, the limit relation between Jacobi polynomials P ða;bÞ
n ðxÞ and Hermite polynomials

HnðxÞ is

lim
a!1

a	1=2nP ða;aÞ
n

xffiffiffi
a

p
� 	

¼ HnðxÞ
2nn!

;
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and between Meixner polynomials Mnðx; b; cÞ and Charlier polynomials Cnðx; aÞ is

lim
b!1

Mn x; b;
a

aþ b

� 	
¼ Cnðx; aÞ:

For a detailed account of the limit relations of Askey scheme, the interested reader should consult Koekoek

and Swarttouw [21] and Schoutens [22].

The orthogonal polynomials associated with the generalized polynomial chaos, which will also be called

the Askey-chaos hereafter, include: Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk and Hahn

polynomials. A review of their definitions and properties can be found in Appendix A of this paper.

3. The generalized polynomial chaos

In this section we introduce the generalized polynomial chaos expansion along with the Karhunen–

Loeve (KL) expansion, another classical technique for representing random processes. The KL expansion

can be used in some cases to represent efficiently the known stochastic fields, i.e., the stochastic inputs.

3.1. The original Wiener polynomial chaos: Hermite-chaos

The original polynomial chaos, also termed as the homogeneous chaos, was first introduced by Wiener

[9]. It employs the Hermite polynomials in terms of Gaussian random variables. According to a theorem by
Cameron and Martin [23], it can approximate any functionals in L2ðCÞ and converges in the L2ðCÞ sense,
where C is the space of real functions which are continuous on the interval ½0; 1� and vanish at 0. Therefore,
polynomial chaos provides a means for expanding second-order random processes in terms of Hermite

polynomials. Second-order random processes are processes with finite variance, and this applies to most

physical processes. Thus, a general second-order random process X ðhÞ, viewed as a function of h, i.e., the
random event, can be represented in the form

Fig. 1. The Askey scheme of orthogonal polynomials.

D. Xiu, G.E. Karniadakis / Journal of Computational Physics 187 (2003) 137–167 141



X ðhÞ ¼ a0H0 þ
X1
i1¼1

ai1H1ðni1ðhÞÞ þ
X1
i1¼1

Xi1
i2¼1

ai1i2H2ðni1ðhÞ; ni2ðhÞÞ

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1i2i3H3ðni1ðhÞ; ni2ðhÞ; ni3ðhÞÞ þ � � � ; ð9Þ

where Hnðni1 ; . . . ; ninÞ denote the Hermite polynomials of order n in terms of the multi-dimensional
independent standard Gaussian random variables n ¼ ðni1 ; . . . ; ninÞ with zero mean and unit variance. The
above equation is the discrete version of the original Wiener polynomial chaos expansion, where the

continuous integrals are replaced by summations. The general expression of the Hermite polynomials is

given by

Hnðni1 ; . . . ; ninÞ ¼ e1=2n
T nð	1Þn on

oni1 � � � onin

e	1=2n
T n: ð10Þ

For example, the one-dimensional Hermite polynomials are:

W0 ¼ 1; W1 ¼ n; W2 ¼ n2 	 1; W3 ¼ n3 	 3n; . . . ð11Þ

For notational convenience, Eq. (9) can be rewritten as

X ðhÞ ¼
X1
j¼0

âajWjðnÞ; ð12Þ

where there is a one-to-one correspondence between the functions Hnðni1 ; . . . ; ninÞ and WjðnÞ, and also
between the coefficients âaj and ai1;...;ir . In Eq. (9) the summation is carried out according to the order of the

Hermite polynomials, while in Eq. (12) it is simply a re-numbering with the polynomials of lower order

counted first. For clarity, the two-dimensional expansion is shown here, both in the fully expanded form

(see Eq. (9))

X ðhÞ ¼ a0H0 þ a1H1ðn1Þ þ a2H1ðn2Þ þ a11H2ðn1; n1Þ þ a12H2ðn2; n1Þ þ a22H2ðn2; n2Þ þ � � � ; ð13Þ

and the simplified form (see Eq. (12))

X ðhÞ ¼ âa0W0 þ âa1W1 þ âa2W2 þ âa3W3 þ âa3W4 þ âa5W5 þ � � �
¼ âa0 þ âa1n1 þ âa2n2 þ âa3ðn21 	 1Þ þ âa3ðn1n2Þ þ âa5ðn22 	 1Þ þ � � � ð14Þ

The polynomial chaos forms a complete orthogonal basis in the L2 space of the Gaussian random variables,
i.e.,

hWiWji ¼ hW2
i idij; ð15Þ

where dij is the Kronecker delta and h�; �i denotes the ensemble average. This is the inner product in the
Hilbert space of the Gaussian random variables

hf ðnÞgðnÞi ¼
Z

f ðnÞgðnÞW ðnÞdn: ð16Þ

The weighting function is

W ðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p e	1=2n
T n; ð17Þ
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where n is the dimension of n. What distinguishes the Wiener–Hermite expansion from many other possible
complete sets of expansions is that the polynomials here are orthogonal with respect to the weighting

function W ðnÞ which has the form of the multi-dimensional independent Gaussian probability distribution
with unit variance. We will use the term Hermite-chaos hereafter to denote the Wiener polynomial chaos.

3.2. The generalized polynomial chaos: Askey-chaos

The Hermite-chaos expansion has been quite effective in solving stochastic differential equations with

Gaussian inputs as well as certain types of non-Gaussian inputs, e.g., lognormal distributions [8,24,25]; this

can be justified by the Cameron–Martin theorem [23]. However, for general non-Gaussian random inputs,

the convergence rate is not fast. In some cases the convergence rate is, in fact, severely deteriorated.

In order to deal with more general random inputs, we introduce the generalized polynomial chaos
expansion, the Askey-chaos, as a generalization of the original Wiener�s Hermite-chaos expansion. The
expansion basis of the Askey-chaos is formed by the complete set of orthogonal polynomials from the

Askey scheme (see Section 2.3). Similar to Section 3.1, we represent the general second-order random

process X ðhÞ as

X ðhÞ ¼ a0I0 þ
X1
i1¼1

ci1 I1ðfi1ðhÞÞ þ
X1
i1¼1

Xi1
i2¼1

ci1i2 I2ðfi1ðhÞ; fi2ðhÞÞ

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ci1i2i3I3ðfi1ðhÞ; fi2ðhÞ; fi3ðhÞÞ þ � � � ; ð18Þ

where Inðfi1 ; . . . ; finÞ denotes the Askey-chaos of order n in terms of the multi-dimensional random variables
f ¼ ðfi1 ; . . . ; finÞ. In the Askey-chaos expansion, the polynomials In are not restricted to Hermite polyno-
mials but instead they could be any member of the Askey scheme, as shown in Fig. 1. Again for notational

convenience, we rewrite Eq. (18) as

X ðhÞ ¼
X1
j¼0

ĉcjUjðfÞ; ð19Þ

where there is a one-to-one correspondence between the functions Inðfi1 ; . . . ; finÞ and UjðfÞ, and their co-
efficients ĉcj and ci1;...;ir . Since each type of polynomials from the Askey scheme form a complete basis in the
Hilbert space determined by their corresponding support, we can expect each type of Askey-chaos to

converge to any L2 functional in the L2 sense in the corresponding Hilbert functional space as a generalized
result of Cameron–Martin theorem [23,26]. The orthogonality relation of the Askey-chaos polynomial

chaos takes the form

hUiUji ¼ hU2
i idij; ð20Þ

where dij is the Kronecker delta and h�; �i denotes the ensemble average which is the inner product in the
Hilbert space of the variables f

hf ðfÞgðfÞi ¼
Z

f ðfÞgðfÞW ðfÞdf; ð21Þ

or

hf ðfÞgðfÞi ¼
X

f

f ðfÞgðfÞW ðfÞ ð22Þ
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in the discrete case. Here W ðfÞ is the weighting function corresponding to the Askey polynomials chaos
basis fUig; see Appendix A for detailed formulas. Some types of orthogonal polynomials from the Askey
scheme have weighting functions of the same form as the probability function of certain types of random
distributions. In practice, we then choose the type of independent variables f in the polynomials fUiðfÞg
according to the type of random distributions as shown in Table 1. It is clear that the original Wiener

polynomial chaos corresponds to the Hermite-chaos and is a subset of the Askey-chaos. The Hermite-,

Laguerre- and Jacobi-chaos are continuous chaos, while Charlier-, Meixner-, Krawtchouk- and Hahn-chaos

are discrete chaos. It is worth mentioning that the Legendre polynomials, which is a special case of the

Jacobi polynomials P ða;bÞ
n ðxÞ with parameters a ¼ b ¼ 0, correspond to an important distribution – the

uniform distribution. Due to the importance of the uniform distribution, we list it separately in the table and

term the corresponding chaos expansion as the Legendre-chaos.

3.3. The Karhunen–Loeve expansion

The Karhunen–Loeve (KL) expansion [27] is another way of representing a random process. It is based
on the spectral expansion of the covariance function of the process. Let us denote the process by hðx; hÞ and
its covariance function by Rhhðx; yÞ, where x and y are the spatial or temporal coordinates. By definition, the
covariance function is real, symmetric, and positive definite. All eigenfunctions are mutually orthogonal

and form a complete set spanning the function space to which hðx; hÞ belongs. The KL expansion then takes
the following form:

hðx; hÞ ¼ �hhðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞniðhÞ; ð23Þ

where �hhðxÞ denotes the mean of the random process, and niðhÞ forms a set of uncorrelated random
variables. Also, /iðxÞ and ki are the eigenfunctions and eigenvalues of the covariance function, respectively,
i.e., Z

Rhhðx; yÞ/iðyÞdy ¼ ki/iðxÞ: ð24Þ

Among many possible decompositions of a random process, the KL expansion is optimal in the sense that

the mean-square error of the finite representation of the process is minimized. Its use, however, is limited as

the covariance function of the solution process is often not known a priori. Nevertheless, the KL expansion

provides an effective means of representing the input random processes when the covariance structure is

known.

Table 1

Correspondence of the type of Wiener–Askey polynomial chaos to the type of random inputs (N P 0 is a finite integer)

Random inputs Wiener–Askey chaos Support

Continuous Gaussian Hermite-chaos ð	1;1Þ
Gamma Laguerre-chaos ½0;1Þ
Beta Jacobi-chaos ½a; b�
Uniform Legendre-chaos ½a; b�

Discrete Poisson Charlier-chaos f0; 1; 2; . . .g
Binomial Krawtchouk-chaos f0; 1; . . . ;Ng
Negative binomial Meixner-chaos f0; 1; 2; . . .g
Hypergeometric Hahn-chaos f0; 1; . . . ;Ng
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4. The Askey-chaos for Navier–Stokes equations

In this section we present the solution procedure for solving the stochastic Navier–Stokes equations by

generalized polynomial chaos expansion. The randomness in the solution can be introduced through

boundary conditions, initial conditions, forcing, etc.

4.1. Governing equations

We employ the incompressible Navier–Stokes equations:

r � u ¼ 0; ð25Þ

ou

ot
þ ðu � rÞu ¼ 	rP þ Re	1r2u; ð26Þ

where P is the pressure and Re the Reynolds number. All flow quantities, i.e., velocity and pressure are
considered stochastic processes. A random dimension, denoted by the parameter h, is introduced in ad-
dition to the spatial–temporal dimensions ðx; tÞ, thus

u ¼ uðx; t; hÞ; P ¼ Pðx; t; hÞ: ð27Þ

We then apply the generalized polynomial chaos expansion, or the Askey-chaos (19), to these quantities

and obtain

uðx; t; hÞ ¼
XP

i¼0
uiðx; tÞUiðfðhÞÞ; Pðx; t; hÞ ¼

XP

i¼0
Piðx; tÞUiðfðhÞÞ; ð28Þ

where we have replaced the infinite summation in infinite dimension of f in Eq. (12) by a truncated

finite-term summation in finite dimensional space of f. The total number of expansion terms, ðP þ 1Þ,
depends on the number of random dimensions (n) of f and the highest order (p) of the polynomials U
[8]

P ¼
Xp

s¼1

1

s!

Ys	1
r¼0

ðnþ rÞ: ð29Þ

The most important aspect of the above expansion is that the random processes have been decomposed into

a set of deterministic functions in the spatial–temporal variables multiplied by the random basis polyno-

mials which are independent of these variables.

Substituting (28) into Navier–Stokes equations (25) and (26) and noting that the partial derivatives are

taken in physical space and thus commute with the operations in random space, we obtain the following

equations:

XP

i¼0
r � uiðx; tÞUi ¼ 0; ð30Þ

XP

i¼0

ouiðx; tÞ
ot

Ui þ
XP

i¼0

XP

j¼0
½ðui � rÞujÞ�UiUj ¼ 	

XP

i¼0
rPiðx; tÞUi þ Re	1

XP

i¼0
r2uiUi: ð31Þ
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We then project the above equations onto the random space spanned by the basis polynomials fUig by
taking the inner product of above equation with each basis. By taking h�;Uki and utilizing the orthogonality
condition (15), we obtain the following set of equations:

For each k ¼ 0; . . . ; P ,

r � uk ¼ 0; ð32Þ

ouk

ot
þ 1

hU2
ki

XP

i¼0

XP

j¼0
eijk½ðui � rÞujÞ� ¼ 	rPk þ Re	1r2uk; ð33Þ

where eijk ¼ hUiUjUki. Together with hU2
i i, the coefficients eijk can be evaluated analytically from the def-

inition of Ui. The set of equations consists of ðP þ 1Þ system of �Navier–Stokes-like� equations for each
random mode coupled through the convective terms.

4.2. Numerical formulation

4.2.1. Temporal discretization

We employ the semi-implicit high-order fractional step method, which for the standard deterministic

Navier–Stokes equations (25) and (26) has the form [28]:

ûu	
PJ

q¼0 aqu
n	q

Dt
¼ 	

XJ

q¼0
bq ðu � rÞu½ �n	q

; ð34Þ

^̂uûuu	 ûu
Dt

¼ 	rPnþ1; ð35Þ

c0u
nþ1 	 ^̂uûuu

Dt
¼ Re	1r2unþ1; ð36Þ

where J is order of accuracy in time and a; b and c are integration weights. A pressure Poisson equation is
obtained by enforcing the discrete divergence-free condition r � unþ1 ¼ 0

r2Pnþ1 ¼ 1

Dt
r � ûu ð37Þ

with the appropriate pressure boundary condition given as

oP
on

¼ n � ûu=Dt
h

	 Re	1r� xnþ1
i
; ð38Þ

where n is the outward unit normal vector and x ¼ r� u is the vorticity. The method achieves third-order
accuracy in time; the coefficients for the integration weights can be found in [29].

In order to discretize the stochastic Navier–Stokes equations, we apply the same approach to the

coupled set of equations (32) and (33):

For each k ¼ 0; . . . ; P ,

ûuk 	
PJ

q¼0 aqu
n	q
k

Dt
¼ 	 1

hU2
ki

XJ

q¼0
bq

XP

i¼0

XP

j¼0
eijkðui � rÞuj

" #n	q

; ð39Þ
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^̂uûuuk 	 ûuk
Dt

¼ 	rPnþ1
k ; ð40Þ

c0u
nþ1
k 	 ^̂uûuuk
Dt

¼ Re	1r2unþ1k : ð41Þ

The discrete divergence-free condition for each mode r � unþ1k ¼ 0 results in a set of consistent Poisson
equations for each pressure mode

r2Pnþ1
k ¼ 1

Dt
r � ûuk; k ¼ 0; . . . ; P ; ð42Þ

with appropriate pressure boundary condition derived similarly as in [28]

oPk

on
¼ n � ûuk=Dt

h
	 Re	1r� xnþ1

k

i
; k ¼ 0; . . . ; P ; ð43Þ

where n is the outward unit normal vector along the boundary, and xk ¼ r� uk is the vorticity for each
random mode.

4.2.2. Spatial discretization

Spatial discretization can be carried out by any method, but here we employ the spectral/hp element
method in order to have better control of the numerical error [29]. In addition, the all-spectral discretization
in space and along the random direction leads to homogeneous inner products, which in turn results in

more efficient ways of inverting the algebraic systems. In particular, the spatial discretization is based on

Jacobi polynomials on triangles or quadrilaterals in two dimensions, and tetrahedra, hexahedra or prisms

in three dimensions.

4.3. Post-processing

The coefficients in the expansion of the solution process (Eq. (28)) are obtained after solving Eqs. (39)–

(43). We then obtain the analytical form (in random space) of the solution process. It is possible to perform

a number of analytical operations on the stochastic solution in order to carry out other analysis such as the

sensitivity analysis. Specifically, the mean solution is contained in the expansion term with index of zero.

The second-moment, i.e., the covariance function is given by

Ruuðx1; t1; x2; t2Þ ¼ huðx1; t1Þ 	 uðx1; t1Þ; uðx2; t2Þ 	 uðx2; t2Þi ¼
XP

i¼1
uiðx1; t1Þuiðx2; t2ÞhU2

i i
� �

: ð44Þ

Note that the summation starts from index ði ¼ 1Þ instead of 0 to exclude the mean, and that the or-
thogonality of the Askey-chaos basis fUig has been used in deriving the above equation. The variance of the
solution, i.e., the �mean-square� value, is obtained as

Varðuðx; tÞÞ ¼ uðx; tÞ
��

	 uðx; tÞ
�2�

¼
XP

i¼1
u2i ðx; tÞhU2

i i
� �

; ð45Þ

and the root-mean-square (rms) is simply the square root of the variance. Similar expressions can be ob-

tained for the pressure field.
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5. Numerical results

In this section we present numerical results of the applications of the generalized polynomial chaos. We

first consider the stochastic ordinary differential equation and demonstrate exponential convergence with

the optimal Askey-chaos. We then solve the incompressible flow in the pressure-driven channel where there

is uncertainty associated with the wall boundary conditions. Subsequently, we simulate laminar flow past a

circular cylinder with uncertain freestream.

5.1. Stochastic ordinary differential equation

5.1.1. Solution procedure

To demonstrate the convergence type, we consider the ordinary differential equation

dyðtÞ
dt

¼ 	ky; yð0Þ ¼ ŷy; ð46Þ

where the decay rate coefficient k is considered to be a random variable kðhÞ with certain distribution and
zero mean value �kk ¼ 0. The probability function is f ðkÞ for the continuous case or f ðkiÞ for the discrete
case. The deterministic solution is constant over time yðtÞ ¼ ŷye	�kkt ¼ ŷy, while the mean of stochastic solution
is

�yyðtÞ ¼ ŷy
Z
S
e	ktf ðkÞdk or �yyðtÞ ¼ ŷy

X
i

e	kitf ðkiÞ ð47Þ

corresponding to the continuous and discrete distributions, respectively. The integration and summation

are taken within the support of the corresponding distribution, and in general the mean of stochastic so-
lution is time varying.

By applying the generalized polynomial chaos expansion of Eq. (19) to the solution y and random
input k

yðtÞ ¼
XP

i¼0
yiðtÞUi; k ¼

XP

i¼0
kiUi ð48Þ

and substituting the expansions into the governing equation, we obtain

XP

i¼0

dyiðtÞ
dt

Ui ¼ 	
XP

i¼0

XP

j¼0
UiUjkiyjðtÞ: ð49Þ

A Galerkin projection onto each polynomial basis results in a set of coupled ordinary differential equations

for each random mode

dylðtÞ
dt

¼ 	 1

hU2
l i

XP

i¼0

XP

j¼0
eijlkiyjðtÞ; l ¼ 0; 1; . . . ; P ; ð50Þ

where eijl ¼ hUiUjUli. A standard second-order Runge–Kutta scheme is used to integrate the equations. We
define the two error measures for the mean and variance of the solution:

emeanðtÞ ¼
�yyðtÞ 	 �yyexactðtÞ

�yyexactðtÞ

�����
�����; evarðtÞ ¼

r2ðtÞ 	 r2exactðtÞ
r2exactðtÞ

����
����; ð51Þ
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where �yyðtÞ ¼ E½yðtÞ� is the mean value of yðtÞ and r2ðtÞ ¼ E½ðyðtÞ 	 �yyðtÞÞ2� is the variance of the solution.
The initial condition is fixed to be ŷy ¼ 1 and the integration is performed up to t ¼ 1 (non-dimensional time
units).

5.1.2. Gaussian distribution and Hermite-chaos

When k is a Gaussian random variable with probability density function f ðkÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
e	k2=2, the op-

timal Askey-chaos is the Hermite-chaos which can represent the input k �exactly� with first-order expansion.
Fig. 2 shows the solution by the Hermite-chaos expansion. The convergence to zero of errors in the mean

and variance as the order of Hermite-chaos increases is shown on semi-log plot; exponential convergence

rate is achieved.

5.1.3. Poisson distribution and Charlier-chaos

As an example of the discrete case, we assume k is a random variable with Poisson distribution

f ðk; kÞ ¼ e	k kk

k!
; k ¼ 0; 1; 2; . . . ; k > 0: ð52Þ

In this case the optimal Askey-chaos is the Charlier-chaos (see Table 1).
Results with fourth-order Charlier-chaos expansion are shown in Fig. 3 for two different distributions

corresponding to different values of k. Again, exponential convergence rate is observed.

5.1.4. Effects of non-optimal basis

In this section we present examples of representing a stochastic input with non-optimal Askey-chaos.

More specifically, we present results of using Hermite-chaos expansion for an exponential distribution.

Although, in theory, Hermite-chaos converges and it has been successfully applied to some non-Gaussian

processes (e.g., lognormal [24]), we demonstrate numerically here that exponential convergence rate is not

realized. In Fig. 4 the approximation of an exponential random variable by Hermite-chaos is plotted on the

left. It can be seen the Hermite-chaos converges and the fifth-order approximation is very close to the exact

distribution, with some noticeable difference at x � 0 where the PDF reaches its peak at 1. Subsequently, if

Fig. 2. Solution with Gaussian random input by fourth-order Hermite-chaos: left: solution of each random mode; right: error con-

vergence of the mean and the variance.
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we continue to use Hermite-chaos to solve the Eq. (46) with k being an exponential random variable, the
exponential convergence rate will not be maintained as opposed to the Laguerre-chaos.

Another interesting example is shown in Fig. 5, when a beta random variable is approximated by the
Hermite-chaos. The convergence of Hermite-chaos can be clearly seen from the approximated PDF

compared with the exact PDF. The special case of a ¼ b ¼ 0 corresponds to the uniform distribution, and
we observe oscillations near the corners of the square. This is analogous to the familiar Gibb�s phenomenon
in the deterministic spectral approximation. In this case, the best choice is the Jacobi-chaos which can

represent the beta random variable exactly with only the first-order term. We expect that exponential

convergence rate will not be maintained if the non-optimal Hermite-chaos is used to solve Eq. (46) instead

of the Jacobi-chaos.

Fig. 4. Approximation of exponential distribution with Hermite-chaos: left: PDF of different orders of approximations of exponential

random variable by Hermite-chaos; right: error convergence of the mean solution with Laguerre-chaos and Hermite-chaos.

Fig. 3. Solution with Poisson random input by fourth-order Charlier-chaos: left: solution of each mode (k ¼ 1); right: error con-
vergence of the mean and the variance with different k.
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5.2. Pressure-driven channel flow

We consider a pressure-driven channel flow as shown in Fig. 6, where the boundary conditions are

considered to be uncertain. The domain (see Fig. 6) has dimensions such that y 2 ½	1; 1� and x 2 ½	5; 5�.
The pressure gradient, acting like a driving force, is equal to twice the kinematic viscosity, and thus for a

no-slip wall condition the solution is a parabolic profile with centerline velocity equals unity.

5.2.1. Micro-channel flow: uniform boundary conditions

We assume that the boundary conditions at the two walls are uncertain with zero mean value, i.e.,

u1 ¼ 0þ r1n1 and u2 ¼ 0þ r2n2, where n1 and n2 are two independent random variables, and r1 and r2 are
their corresponding standard deviations. Since the boundary conditions are uniform in space, with periodic

boundary conditions specified in the streamwise direction, the nonlinear terms in the stochastic Navier–

Stokes equations (33) vanish, and we obtain the exact solution

uðx; yÞ ¼ ð1	 y2Þ þ 1	 y
2

r1n1 þ
1þ y
2

r2n2; vðx; yÞ ¼ 0: ð53Þ

The solution consists of a parabolic profile for the mean solution and two linear random modes (n1 and n2)
linearly distributed across the channel width. Note the form of the exact solution is independent of the

distribution type of random variables n1 and n2.

Fig. 5. PDF of approximations of Beta distributions by Hermite-chaos: left: a ¼ b ¼ 0, the uniform distribution; right: a ¼ 2, b ¼ 0.

Fig. 6. Schematic of the domain for pressure-driven channel flow with random boundary conditions.
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On the left of Fig. 7 we show the solution profile across the channel. The n1 and n2 are two independent
Gaussian random variables with r1 ¼ 0:02 and r2 ¼ 0:01. The two-dimensional ðn ¼ 2Þ Hermite-chaos, the
optimal Askey-chaos in this case, is employed. Although the solution suggests that only a first-order

expansion (p ¼ 1) is needed, higher-order terms (p > 1) are included in the computation but are identically
zero as expected. Another test is to set the initial condition of the flow to an arbitrary random state. We add

perturbation terms to the exact solution (Eq. (53)) for each random mode in the form of

ukðx; y; 0Þ ¼ apf ðx; yÞ and vkðx; y; 0Þ ¼ apgðx; yÞ for k ¼ 0; . . . ; P . Here p is the order of the chaos expansions
and 0 < a < 1 to ensure the decaying of the perturbation. On the right of Fig. 7 we show the time history of
some dominant random modes of v-velocity at the center of the channel. It is seen that due to the nonlinear
interactions between the random modes some of them are amplified in the early stage, but eventually all

modes converge to the exact solution.

Computations with other types of random inputs have been conducted with their corresponding Askey-

chaos expansions.More specifically, we set n1 and n2 to be beta and gamma random variables and employ the
Jacobi-chaos and Laguerre-chaos, respectively. Similar results were obtained with the results shown in Fig. 7.

5.2.2. Micro-channel flow: non-uniform boundary conditions

Next we consider the case of non-uniform random boundary conditions, i.e., the wall boundary con-

ditions at different locations are partially correlated. The wall boundary conditions are assumed to be
random processes with correlation function in the form

Cðx1; x2Þ ¼ r2e	ðjx1	x2jÞ=b; ð54Þ

where b is the correlation length. This correlation function has been employed extensively to model pro-
cesses in many fields; it is employed here because it allows us to solve the eigenvalue problem (24) of the
Karhunen–Loeve expansion of Eq. (23) analytically. If this is not the case, a standard numerical eigenvalue

solver can be used.

By setting a relatively large correlation length b ¼ 100, the eigenvalues of the Karhunen–Loeve ex-
pansion are

k1 ¼ 9:675354; k2 ¼ 0:1946362; k3 ¼ 0:05014117; . . .

Fig. 7. Solution of the micro-channel with uniform Gaussian random boundary conditions: left: the solution profile; right: devel-

opment of random modes of v-velocity with nonzero initial conditions.
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Due to the fast decay of the eigenvalues, we use the first two terms in the Karhunen–Loeve expansion given

by Eq. (23). This results in a two-dimensional chaos expansion (n ¼ 2). Resolution-independence checks
were conducted and the fourth-order chaos expansion (p ¼ 4) were found to be sufficient to resolve the
problem in the random space. Using Eq. (29) this results in a 15-term expansion (P ¼ 14). Only the lower
wall boundary condition is assumed to be uncertain with r ¼ 0:1, while the upper wall is stationary and
deterministic. A parabolic velocity profile is specified at the inlet and zero Neumann condition at the outlet.

A mesh with 10� 2 elements is employed and basis Jacobi polynomials of sixth-order in each element
results in resolution independent solution in space.
We first consider the lower wall boundary condition a Gaussian random process and employ the

Hermite-chaos expansion. Fig. 8 shows the velocity contour plot of the deviation of the mean solution at

steady-state from a parabolic profile. The mean of u-velocity remains close to the parabolic shape and the
mean of v-velocity, although small in magnitude, is non-zero. Fig. 9 shows steady-state solutions of the

Fig. 8. Deviation of mean solution from a parabolic profile in micro-channel flow with partially correlated random boundary con-

ditions at the lower wall: upper: u-velocity; lower: v-velocity.

Fig. 9. Contours of rms of u-velocity (upper) and v-velocity (lower).
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root-mean square (rms) of u and v-velocity. We see the development of a �stochastic boundary layer� close to
the lower wall. All the higher-order expansion terms are non-zero, which implies that although the random

input is a Gaussian process, the solution output is not Gaussian. Since no analytic solution is available,

Monte Carlo (MC) simulation is used to validate the result. Fig. 10 shows the solution of mean velocity u
and v along the centerline of the channel. It is seen that the Monte Carlo solution converges non-mono-
tonically to the Hermite-chaos result as the number of realizations increases. In this case, it is only after

40,000 realizations that Monte Carlo solution can capture the solution accurately, especially the nonlinear

interactions close to the inlet. The polynomial chaos solver, with 15 terms in the expansions, is more than
two thousands times faster than the Monte Carlo computation without using any special optimization

techniques. In Fig. 11 the solution of the mean velocity along the centerline is shown corresponding to

different values of r. It can be seen that as the intensity of the input uncertainty r increases the stochastic
solution responses increase nonlinearly.

Fig. 10. Monte Carlo (MC) and Hermite-chaos (HC) solution of the mean velocities along the centerline of the channel: left: u-
velocity; right: v-velocity.

Fig. 11. Hermite-chaos solution of the mean velocities along the centerline of the channel with different r: left: u-velocity; right:
v-velocity.
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In Fig. 12 we plot the mean solution along the centerline of the channel with different types of

stochastic inputs. Specifically, we assume the random processes of the low wall boundary condition are

zero-mean Gaussian, uniform and exponential processes with the same exponential correlation structure

(Eq. (54)) and fixed parameter r ¼ 0:4. The corresponding Askey-chaos, i.e., the Hermite-, Legendre-
and Laguerre-chaos, respectively, are employed. The variance of the velocity, non-dimensionalized by
the input variance r2, is shown in Fig. 13. It is seen that the uniform random process results in a

smoother solution with smaller variances due to the fact that the uniform distribution has finite

support.

Fig. 14 shows the solution of mean velocity along the centerline of the channel corresponding to uniform

stochastic process as the lower wall boundary conditions, with the same correlation structure as above

Fig. 12. Chaos solution of mean velocities along the centerline of the channel with different types of input processes: left: u-velocity;

right: v-velocity.

Fig. 13. Chaos solution of variance along the centerline of the channel with different types fo input processes: left: variance of u-

velocity; right: variance of v-velocity.
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ðr ¼ 0:4Þ. The Legendre-chaos expansion is employed. The Monte Carlo solution converges to the chaos
solution; with 120,000 realizations it captures the nonlinear interactions near the inlet accurately. The

Legendre-chaos corresponds to dimension n ¼ 2 and polynomial order p ¼ 4, which according to the
formula of Eq. (29) gives 15 terms in the expansion.

5.3. Flow past a circular cylinder

In this section we simulate two-dimensional incompressible flow past a circular cylinder with random

fluctuations superimposed to the freestream. More specifically, the inflow takes the form uin ¼ �uuþ g,
where g is a random variable or process. Here we focus on the Gaussian process and Hermite-chaos

solution. The size of the computational domain is ½	15; 25� � ½	9; 9� and the cylinder is at the

origin ð0; 0Þ with diameter D ¼ 1. The definition of Reynolds number is based on the mean value of
the inflow velocity �uu and the diameter of the cylinder. The domain consists of 412 triangular elements
with periodic conditions specified in the crossflow direction. Sixth-order Jacobi polynomial in

each element is observed to result in resolution-independent solution in space for Reynolds number less

than 200.

5.3.1. Flow close to first critical Reynolds number

It is well known that for two-dimensional flow past a circular cylinder, the first critical Reynolds number

is around Re � 40, where the flow bifurcates from steady state to periodic vortex shedding [30]. Here we

study the effects of the upstream random perturbations close to this Reynolds number. We set uin ¼ �uuþ rn,
where n is a Gaussian random variable and r is its standard deviation. The one-dimensional Hermite-chaos
expansion is thus employed. The pressure at the rear stagnation point of the cylinder is extremely sensitive

to the vortex shedding state and is monitored in our computation.

Fig. 15 shows the time history of the mean pressure at the rear stagnation point at Re ¼ 40, which is close
to the critical Reynolds number. Solution with fourth-order and sixth-order Hermite-chaos are shown,

together with the deterministic pressure history as reference. A negligible difference is observed between

fourth-order and sixth-order chaos solutions (less than 0.1%). Thus, the solution can be considered as

Fig. 14. Monte Carlo (MC) and Legendre-chaos solution of the mean velocities along the centerline of the channel with uniform

stochastic inputs: left: u-velocity; right: v-velocity.
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resolution-independent in the random space. In the close-up view we see that the 10% random perturbation

(r ¼ 0:1) triggers an instability and the flow becomes weakly periodic, as opposed to the deterministic
solution which remains steady.

Next, we lower further the inflow Reynolds number to Re ¼ 35. In Fig. 16 we show the time history of
the mean pressure signal at the rear stagnation point. Again, resolution independence checks show a

negligible difference (less than 0.1%) in the solutions by fourth-order and sixth-order Hermite-chaos. It is
shown that at this Reynolds number a 10% random perturbation (r ¼ 0:1) is unable to trigger an instability
and the flow remains steady. On the other hand, with a larger perturbation (r ¼ 0:2) the flow becomes
weakly unsteady again.

These results suggest that the inflow random perturbations have noticeable effects on the stability of the

flow near its critical Reynolds number. In fact, the existence of upstream perturbation induces the insta-

Fig. 15. Time history of mean pressure at the rear stagnation point at Re ¼ 40 (Gaussian perturbation with r ¼ 0:1): left: the time
history; right: close-up view.

Fig. 16. Time history of mean pressure at the rear stagnation point at Re ¼ 35: left: the time history; right: close-up view.
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bility and forces the transition to occur at lower Reynolds number. This study is similar to that of Kaiktsis

et al. [31] where the convective instability is studied by introducing random perturbations at the inflow of

the backward-facing step flow. Instead of running many realizations of the deterministic flow solver, here

we can resolve the propagation of inflow uncertainty by chaos expansion in one single run of the stochastic

solver.

5.3.2. Flow at Re ¼ 100

We consider another case at Re ¼ 100 with freestream random velocity partially correlated. The inflow is
uin ¼ �uuþ gðyÞ where gðyÞ is a Gaussian process with the exponential covariance kernel of Eq. (54) with
r ¼ 0:02. Again, a relatively large correlation length is chosen (b ¼ 100) so that the first two eigenmodes are
adequate to represent the process by Karhunen–Loeve expansion (23). Thus, we employ a two-dimensional

Hermite-chaos expansion (n ¼ 2) and fourth-order chaos (p ¼ 4).
Fig. 17 shows the pressure signal, together with the deterministic signal for reference (denoted as PD in

dotted line). We see that the stochastic mean pressure signal has a smaller amplitude and is out-of-phase

with respect to the deterministic signal. Although initially, the stochastic response follows the deterministic

response, eventually there is a change in the Strouhal frequency as shown in Fig. 18. Specifically, the

Strouhal frequency of the mean stochastic solution is slightly lower than the deterministic one and has a

broader support.

In Fig. 19 we present velocity profiles along the centerline for the deterministic and the mean stochastic

solution at the same time instant. We see that significant quantitative differences emerge even with a rel-
atively small 2% uncertainty in the freestream. In Fig. 20 we plot instantaneous vorticity contours for the

mean of the vorticity and compared it with the corresponding plot from the deterministic simulation; we

Fig. 17. Pressure signal of cylinder flow with non-uniform Gaussian random inflow: upper: high modes; lower: zero mode (mean).
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observe a diffusive effect induced by the randomness. In Fig. 21 we plot contours of the corresponding rms

of vorticity. It shows that the uncertainty influences the most interesting region of the flow, i.e., the shear

layers and the near-wake but not the far-field.

Fig. 18. Frequency spectrum for the deterministic (high peak) and stochastic simulation (low peak).

Fig. 19. Instantaneous profiles of the two velocity components along the centerline (in the wake) for the deterministic and the mean

stochastic solution.
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6. Summary and discussion

We have developed a stochastic spectral method to model uncertainty and its propagation in simulations

of incompressible flows. Numerical examples were presented for uncertain boundary conditions but the
method can also be applied to model uncertainty in the boundary domain, e.g., a rough surface, in the

transport coefficients, e.g., the eddy viscosity in large eddy simulations and other transport models, or in

interaction forces for coupled problems. It provides a formal procedure for constructing a composite error

Fig. 20. Instantaneous vorticity field: upper: deterministic solution with uniform inflow; lower: mean solution with non-uniform

Gaussian random inflow.

Fig. 21. Instantaneous contours of rms of vorticity field with non-uniform Gaussian random inflow.
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bar for CFD applications, as proposed in [32], that includes, in addition to the discretization errors,

contributions due to imprecise physical inputs to the simulation.

More specifically, we have generalized the original polynomial chaos idea of Wiener and proposed a

broader framework, i.e., the Askey-chaos, which includes Wiener�s Hermite-chaos as a subset. For the most
commonly known probability distributions, there exists a corresponding ‘‘best’’ orthogonal functional, in

the sense that it leads to the substantial dimensional reducibility. We also applied the Askey-chaos expansion

to the Navier–Stokes equations to model uncertainty in incompressible flow simulations for steady and

unsteady problems. Convergence was verified with comparisons against exact solutions and solutions from
Monte Carlo simulations for steady-state problems.

As regards efficiency, a single Askey-chaos based simulation, albeit computationally more expensive

than the deterministic Navier–Stokes solver, is able to generate the solution statistics in a single run.

Specifically, an Askey-chaos Navier–Stokes simulation with a total number of terms ðP þ 1Þ is approxi-
mately ðP þ 1Þ times more expensive than the corresponding deterministic one. (The overhead associated
with the coupling terms is negligible.) In contrast, for the Monte Carlo simulation, tens of thousands of

realizations are required for converged statistics, which is prohibitively expensive for most CFD problems

in practice. For the problems we studied here we can only make direct comparisons for the steady-state
cases, e.g., the micro-channel flow with random boundary conditions. In the case of the Hermite-chaos, the

speed-up factor is approximately 2500 (see Fig. 10; (40,000/15)) for comparable accuracy of the first two

moments. Similarly, for the Legendre-chaos the speed-up factor is about 8000 (see Fig. 14; (120,000/15)).

Clearly, better Monte Carlo algorithms (e.g., accelerated versions with variance reduction) could reduce

this factor but we still expect a three orders of magnitude speed-up for most problems involving a relatively

low number of random dimensions.

There are, however, several open problems that need to be resolved for the Askey-chaos to be a robust

and effective tool for modeling uncertainty. In particular, further research is required on:
• Convergence rate. The relatively poor resolution properties of Hermite and Laguerre expansions, com-

pared to other spectral polynomials, are well documented in the literature [33,34]. However, re-scaling

procedures, as done in [35], can be applied or a change of the trial basis from the Askey scheme, as dem-

onstrated in Section 5.1.4, can be employed to accelerate convergence.

• Dimensionality of the stochastic input. This, in turn, determines the dimensionality of the random space

and correspondingly the computational complexity of the problem. For a physical input random process

with a very short correlation length, a high dimensional chaos expansion is required. As shown in Eq.

(29), the number of expansion terms ðP þ 1Þ increases fast, although algebraically, both with the dimen-
sion n as well as the polynomial order p. In contrast, the convergence rate of the Monte Carlo method is
independent of the number of random dimensions.

• Interaction with spatial/temporal discretization. In this paper, we have employed a multi-step time inte-

grator and spectral/hp element methods for discretizing the deterministic operators. Some of the conclu-
sions of the work presented here may not be readily extended to other discretizations.

The aforementioned issues can be addressed by systematic studies, investigating, for example, different type

projections, filtering, proper trial basis, rescaling, etc. We are currently working in addressing some of these

issues and we will report results in future publications.
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Appendix A. Some orthogonal polynomials in Askey scheme

In this section we briefly review the definitions and properties of some important orthogonal polyno-

mials from Askey scheme, which are discussed in this paper for the Wiener–Askey polynomial chaos.

A.1. Continuous polynomials

A.1.1. Hermite polynomial HnðxÞ and Gaussian distribution
Definition:

HnðxÞ ¼ ð2xÞn2F0
�
	 n
2
;	 n	 1

2
; ;	 1

x2

	
: ðA:1Þ

Orthogonality:

1ffiffiffi
p

p
Z 1

	1
e	x2HmðxÞHnðxÞdx ¼ 2nn!dmn: ðA:2Þ

Recurrence relation:

Hnþ1ðxÞ 	 2xHnðxÞ þ 2nHn	1ðxÞ ¼ 0: ðA:3Þ

Rodriguez formula:

e	x2HnðxÞ ¼ ð	1Þn dn

dxn
e	x2

� �
: ðA:4Þ

The weighting function is wðxÞ ¼ e	x2 from the orthogonality condition (A.2). After rescaling x by
ffiffiffi
2

p
, the

weighting function is the same as the probability density function of a standard Gaussian random variable

with zero mean and unit variance.

A.1.2. Laguerre polynomial LðaÞ
n ðxÞ and Gamma distribution

Definition:

LðaÞ
n ðxÞ ¼ ða þ 1Þn

n! 1
F1ð	n; a þ 1; xÞ: ðA:5Þ

Orthogonality:Z 1

0

e	xxaLðaÞ
m ðxÞLðaÞ

n ðxÞdx ¼ Cðnþ a þ 1Þ
n!

dmn; a > 	1: ðA:6Þ

Recurrence relation:

ðnþ 1ÞLðaÞ
nþ1ðxÞ 	 ð2nþ a þ 1	 xÞLðaÞ

n ðxÞ þ ðnþ aÞLðaÞ
n	1ðxÞ ¼ 0: ðA:7Þ

Rodriguez formula:

e	xxaLðaÞ
n ðxÞ ¼ 1

n!
dn

dxn
ðe	xxnþaÞ: ðA:8Þ

Recall that the Gamma distribution has the probability density function

f ðxÞ ¼ xae	x=b

baþ1Cða þ 1Þ
; a > 	1; b > 0: ðA:9Þ
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Despite of the scale parameter b and a constant factor Cða þ 1Þ, it is the same as the weighting function of
Laguerre polynomial.

A.1.3. Jacobi polynomial P ða;bÞ
n ðxÞ and Beta distribution

Definition:

P ða;bÞ
n ðxÞ ¼ ða þ 1Þn

n! 2
F1

�
	 n; nþ a þ b þ 1; a þ 1; 1	 x

2

	
: ðA:10Þ

Orthogonality:Z 1

	1
ð1	 xÞað1þ xÞbP ða;bÞ

m ðxÞP ða;bÞ
n ðxÞdx ¼ h2ndmn; a > 	1; b > 	1; ðA:11Þ

where

h2n ¼
2aþbþ1

2nþ a þ b þ 1
Cðnþ a þ 1ÞCðnþ b þ 1Þ

Cðnþ a þ b þ 1Þn! :

Recurrence relation:

xP ða;bÞ
n ðxÞ ¼ 2ðnþ 1Þðnþ a þ b þ 1Þ

ð2nþ a þ b þ 1Þð2nþ a þ b þ 2Þ P
ða;bÞ
nþ1 ðxÞ þ

b2 	 a2

ð2nþ a þ bÞð2nþ a þ b þ 2Þ P
ða;bÞ
n ðxÞ

þ 2ðnþ aÞðnþ bÞ
ð2nþ a þ bÞð2nþ a þ b þ 1Þ P

ða;bÞ
n	1 ðxÞ: ðA:12Þ

Rodriguez formula:

ð1	 xÞað1þ xÞbP ða;bÞ
n ðxÞ ¼ ð	1Þn

2nn!
dn

dxn
½ð1	 xÞnþað1þ xÞnþb�: ðA:13Þ

The Beta distribution has the probability density function

f ðxÞ ¼ ðx	 aÞbðb	 xÞa

ðb	 aÞaþbþ1Bða þ 1; b þ 1Þ
; a6 x6 b; ðA:14Þ

where Bðp; qÞ is the Beta function defined as

Bðp; qÞ ¼ CðpÞCðqÞ
Cðp þ qÞ : ðA:15Þ

It is clear that despite of a constant factor the weighting function of Jacobi polynomial wðxÞ ¼
ð1	 xÞað1þ xÞb from (A.11) is the same as the probability density function of Beta distribution defined in
domain ½	1; 1�. When a ¼ b ¼ 0, the Jacobi polynomials become the Legendre polynomials and the
weighting function is a constant which corresponds to the important uniform distribution.

A.2. Discrete polynomials

A.2.1. Charlier polynomial Cnðx; aÞ and Poisson distribution
Definition:

Cnðx; aÞ ¼2 F0

�
	 n;	 x; ;	 1

a

	
: ðA:16Þ
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Orthogonality:

X1
x¼0

ax

x!
Cmðx; aÞCnðx; aÞ ¼ a	nean!dmn; a > 0: ðA:17Þ

Recurrence relation:

	xCnðx; aÞ ¼ aCnþ1ðx; aÞ 	 ðnþ aÞCnðx; aÞ þ nCn	1ðx; aÞ: ðA:18Þ

Rodriguez formula:

ax

x!
Cnðx; aÞ ¼ rn ax

x!

� 	
; ðA:19Þ

where r is the backward difference operator defined as

Df ðxÞ ¼ f ðxþ 1Þ 	 f ðxÞ and rf ðxÞ ¼ f ðxÞ 	 f ðx	 1Þ: ðA:20Þ

The probability function of Poisson distribution is

f ðx; aÞ ¼ e	a a
x

x!
; k ¼ 0; 1; 2; . . . : ðA:21Þ

Despite of a constant factor e	a, it is the same as the weighting function of Charlier polynomials.

A.2.2. Krawtchouk polynomial Knðx; p;NÞ and binomial distribution
Definition:

Knðx; p;NÞ ¼ 2F1

�
	 n;	 x;	 N ;

1

p

	
; n ¼ 0; 1; . . . ;N : ðA:22Þ

Orthogonality:

XN
x¼0

N
x

� 	
pxð1	 pÞN	xKmðx; p;NÞKnðx; p;NÞ ¼ ð	1Þnn!

ð	NÞn
1	 p
p

� 	n

dmn; 0 < p < 1: ðA:23Þ

Recurrence relation:

	xKðx; p;NÞ ¼ pðN 	 nÞKnþ1ðx; p;NÞ 	 ½pðN 	 nÞ þ nð1	 pÞ�Knðx; p;NÞ þ nð1	 pÞKn	1ðx; p;NÞ:
ðA:24Þ

Rodriguez formula:

N
x

� 	
p

1	 p

� 	x

Knðx; p;NÞ ¼ rn N 	 n
x

� 	
p

1	 p

� 	x� �
: ðA:25Þ

Clearly, the weighting function from (A.23) is the probability function of the binomial distribution.

A.2.3. Meixner polynomial Mnðx; b; cÞ and negative binomial distribution
Definition:

Mnðx; b; cÞ ¼ 2F1

�
	 n;	 x; b; 1	 1

c

	
: ðA:26Þ
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Orthogonality:

X1
x¼0

ðbÞx
x!

cxMmðx;b; cÞMnðx; b; cÞ ¼
c	nn!

ðbÞnð1	 cÞb
dmn; b > 0; 0 < c < 1: ðA:27Þ

Recurrence relation:

ðc	 1ÞxMnðx;b; cÞ ¼ cðnþ bÞMnþ1ðx; b; cÞ 	 ½nþ ðnþ bÞc�Mnðx; b; cÞ þ nMn	1ðx; b; cÞ: ðA:28Þ

Rodriguez formula:

ðbÞxcx
x!

Mnðx; b; cÞ ¼ rn ðb þ nÞxcx
x!

� �
: ðA:29Þ

The weighting function is

f ðxÞ ¼ ðbÞx
x!

ð1	 cÞbcx; 0 < p < 1; b > 0; x ¼ 0; 1; 2; . . . : ðA:30Þ

It can verified that it is the probability function of negative binomial distribution. In the case of b being
integer, it is often called the Pascal distribution.

A.2.4. Hahn polynomial Qnðx; a; b;NÞ and hypergeometric distribution
Definition:

Qnðx; a; b;NÞ ¼ 3F2ð	n; nþ a þ b þ 1;	x; a þ 1;	N ; 1Þ; n ¼ 0; 1; . . . ;N : ðA:31Þ

Orthogonality: For a > 	1 and b > 	1 or for a < 	N and b < 	N ,

XN
x¼0

aþ x
x

� 	
b þ N 	 x
N 	 x

� 	
Qmðx; a; b;NÞQnðx; a; b;NÞ ¼ h2ndmn; ðA:32Þ

where

h2n ¼
ð	1Þnðnþ a þ b þ 1ÞNþ1ðb þ 1Þnn!
ð2nþ a þ b þ 1Þða þ 1Þnð	NÞnN !

:

Recurrence relation:

	xQnðxÞ ¼ AnQnþ1ðxÞ 	 ðAn þ CnÞQnðxÞ þ CnQn	1ðxÞ; ðA:33Þ

where

QnðxÞ :¼ Qnðx; a; b;NÞ

and

An ¼
ðnþ a þ b þ 1Þðnþ a þ 1ÞðN 	 nÞ
ð2nþ a þ b þ 1Þð2nþ a þ b þ 2Þ ;

Cn ¼
nðnþ a þ b þ N þ 1Þðnþ bÞ
ð2nþ a þ bÞð2nþ a þ b þ 1Þ :
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Rodriguez formula:

wðx; a; b;NÞQnðx; a; b;NÞ ¼ ð	1Þnðb þ 1Þn
ð	NÞn

rn½wðx; a þ n; b þ n;N 	 nÞ�; ðA:34Þ

where

wðx; a; b;NÞ ¼ a þ x
x

� 	
b þ N 	 x
N 	 x

� 	
:

If we set a ¼ 	~aa 	 1 and b ¼ 	~bb 	 1, we obtain

~wwðxÞ ¼ 1
N 	 ~aa 	 ~bb 	 1

N

� 	�� �
~aa
x

� 	
~bb

N 	 x

� 	� �
~aa þ ~bb
N

� 	�
:

Apart from the constant factor 1= N	~aa	~bb	1
N

� �
, this is the definition of hypergeometric distribution.
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